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ABSTRACT™

Unlike an earlier shock spectra approach, the generalizastion
presented in this paper permits an accurate elastic interaction between
the spacecraft and launch vehicle to obtain accurate bounds on the
spacecraft response and structural loads. In addition, the modal
response from a previcns launch vehicle transient analysis — with or
without a dummy spacecraft — is exploited to define a modal impulse &s
a simple idealization of the actual forcing function. The idealized
modal forcing function is then used to derive explicit expressions for
an estimate of the bound on the spacecraft structural response and

f'orces.

Greater accuracy is achieved with the present method over the
earlier shock spectra, while saving much computational effort over the

transient analysis.
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SECTION I

OVERVIEW RIGINAL p AGE [§

0.
OF POOR QuALpry

A. BACKGROUND

1. Transient Analysis

The determination of the internal loads in a spacecraft structure

subjected to a dynamic launch environment is an iterative process aimed
at the ultimate sizing of the structure for its design. The vrocess

is iterative because the internal loads in the spacecraft are dependent

upon the spacecraft mass and stiffness distribution, as well as the
mass and stiffness distribution interaction with the launch vehicle.

Some of the key parameters that dominate the loads analysis process

C P SR Gt I T e BT

are timeliness of the sizing, cost, weight limitations, and low
: sensitivity to iterative changes in the design. Because the loads are
‘ time-dependent functions, a complete transient analysis aimed at deter-

mining responses to given time-dependent forcing functions is widely

k3t Bt e Sa s B e R NG

used throughout the industry to determine loads in the launch vehicle
and in the spacecraft. The transient analysis is a simulation method
by which the loads time histories must be computed in their entirety

before peak values can be identified for establishing design loads.

Although a transient analysis tends to result in lightweight
designs when properly used, it is usually costly and time consuming,
especially when several organizations are involved. No better method
is presently known when dealing with a launch vehicle, and it is not
suggeested here that this process be changed for the launch vehicles. An

. alternate method is presented, however, for the analysis of the

spacecraft.

-

Alternates to Transient Analysis

In the analysis of an aerospace structure, at least two organi-
zations are involved: one organization responsible for the design and
analysis of the launch vehicle, and another for the spacecraft. For
the spacecraft-developing organization, it is desirable to perform

frequent but inexpensive loads analyses to account for frequent design
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changes in the spacecraft. Ideally. these analyses would include only
the spacecraft, without requiring launch vehicle modeling and without
requiring activity at the launch vehicle agency. For this reason,
several alternatives have been suggested, and References 1l-1 and 1-2
are recent examples. Like the method presented here, the methods given
in References 1-1 and 1-2 apply only when the loads in the spacecraft
result {rom time-~-dependent forcing functions applied on the launch
vehicle, and bypass most of the costly time consuming steps of a com-

plete transient solution.

3. Reduced Transient Analysis Method

The method of Reference 1-1 is a reduced transient analysis.
Accelerations at the spacecraft-launch vehicle interface are obtained
by a single transient analysis of the launch vehicle with a rigid mass.
From this single launch vehicle analysis, interface accelerations
can then be corrected to account for the elasticity of the spacecraft
and used as input to the spacecraft. The correction procedure requires
knowledge of the characteristics of the elastic spacecraft and of the
rigid mass/elastic launch vehicle, but does not require the actual
integration of the spacecraft elastic model with the launch vehicle
elastic model, resulting in a significant cost reduction. From there

on, the procedure follows the usual transient analysis.

L. Shock Spectra Method

Like the approach presented here, the method of Reference 1-2 is
a generalization of the traditicnal shock spectra concept. 1In this

concept, shown in Figure 1-1, a shock spectrum S(w, £) of a function

X (t) is the largest peak response of a single-degree-of-freedom

0
oscillator subjected to the base forcing function, X.(t). The implicit
(t), is not

0

assumption is made that the input forcing function, ﬁo

affected by the presence of the oscillator. This is true only if the

mass of the oscillator is infinitesimal.

The most significant feature of Reference 1-2 was the introduction

of the relative impedance between the spacecraft and the launch vehicle,
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i.e., between the oscillator and the base, in the form of a reduction
factor, C, which accounts for the effect of the osciliator on the inter-
face acceleration. In addition, an envelope is constructed for the
acceleration spectrum at the interface between the spacecraft and launch
vehicle, Figure 1-2, which is used to deternine the level of an equiva-
lent sinusoidal forcing function to be applied at the interface fcr the
computation of the spacecraft member loads. TIn this manner, spacecraft
loads are computed with no integrated launch ve!icle/spacecraft transient
analysis. This method was applied to several spacecraft structures as
reported in Reference 1-3, and was found to be much less costly to

use, but produced somewhat heavier structures than a transient analysis.

In the application of the early shock spectra method outlined
above, a number of assumptions were introduced that made its successful
usage highly dependent upon the ane’yst's intuitive ability to recognize
launch vehicle modes that are important to retain, and those of insig-
nificant effects that can be discarded. The method sensitivity to the
analyst's judgment is highlighted in the tacit assumpticn that the
spacecraft/launch vehicle interface response is douminated almost totally
by one launch vehicle mode at any one frequency, and in the process by

which the envelope of the shock spectra is constructed.

5. The Generalized Shock Spectra Method

The present approach is an extension of Reference 1-2, with the
objective of eliminating the analyst's Jjudgment, formalizing the
derivation and ccmputational steps of the approach, explicitly stating
the necessary assumptions, relaxing unessential ones, and introducing
several significant improvements. These will be discussed in subsequent

sections.

B. OUTLINE OF THE GENERALIZED SHOCK SPECTRA

The following general observations are fundamental to understand-

ing the rationale of the shock spectra approaches:

(1) The general obJective is to avoid the cost of a launch

vehicle/new spacecraft overall transient analysis.

1-4



¥

S

R e b

]

bt e e

©
O]

SPACECRAFT
SUBSYSTEM N\

INTERFACE —~—— T
-l

LAUNCH VEHICLE
SUBSYSTEM

Fipure 1-2. Composite Jystem of spacecrart and Lanneh Vehicle

—~\

1-5

ORIGINAL PAGE I
OF POOR QUALITY

F.
i
£, REACTION

\ f. LAUNCH VEHICLE

~ | FORCING FUNCTIONS

B kL O R T m—— ——

LET T b oo

st



(2)

ey

(&)

There hLas been a previous dynamic analysis done for the
launch vehicle with another or a dummy spacecraft, the
results of which are used as inputs to the generalized
shock spectra method. Note that the present methnd is
derived for use of the modes of the launch vehicle loaded,
by a rigid mass only, or not loaded. If such an analysis
is not available, the proper date can still be r-~covered
from the analysis of the launch vehicle loaded with an

elastic spacecraft as shown in 4; pendix C.

The structural analyst needs only to determine the worst
case load mexima or bounds, rather than time histories,

of the structural respcnse. Since maxima or bounds are

the objective of the shock spectra concept, a shock spectra
approach is readily applicable to the structural design

process.

Any loads analysis — trensient, shock spectra, or other -
incorporates two basic items: a model idealizing the

dynamic environment, i.e., the forcing function, and another
idealizing the composite structural system. The form of
each model is influenced by the selected approach, while

its complexity is constrained by cost and time.

The original launch vehicle forcing functions, usually
unknown to the spacecraft analyst, may be idealized by a
simpler form to obtain an explicit closed form solution.

A complete definition of this idealization is possible from
the previous analysis of item (1) above, and is done at

the modal level.

In view of these remarks, the generalized shock spectra method

g is highliphted as follows:

First, the modal forcing function Fl(t) corresponding to the

modes of the launch vehicle loaded by a rigid mass at the spacecraft

i interface, and representing the mcdal contribution of an actu . flight

1-6
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event, is modeled, regardless of its physical puint of application, by
an equivalent launch vehicle modal forecing function, Fei(t)‘ Unlike
the actual complex transiert force, the equivalent furcing function
chosen is a simpler form of variation with time. Here, an impulse
delta function Fel(t) = F__8(t) with a yet-unknown magnitude F

0oR
equivalently a velocity with magnitude v

oL? °F

oz? is chosen for convenience.
The choice of a simplified forcing function as an impulse
emphasizes the view that the shape of the response time history is of
no consequence, and that only the peak or bound of the response is of
interest. Therefore, any forcing function that would reproduce a
respcnse with the same maximum peak or bound as the actual forcing
function is acceptable. Tne equivalency between the actual forcing
function and the idealized one is established, not oun tie basis of
producing identical response time histories, but on the basis of pro-
ducing an identical peak of the shock spectra of each of the launch
vehicle modal response ai(t)’ Figure 1-3, derived from the previously
performed launch vehicle/dummy spacecraft analysis. An alternate to the

direct use of al(t) is discussed later.

The use of modal shock spectra, rather than the interface degrees-
of-freedcm shock spectra is significant becuse it automatically
accounts for the marching of all interface physical degrees of freedom,

and allows one to determine the modal magnitude of the impulse F g Or

0

velocity v It is noteworthy that the above process of establishing

the equivaggnt idealized forcing function requires knowledge of the
modal properties of the launch vehicle with or without a payload. Such
information is usually available from the launch vehicle organization.
Also note that the rigid mass at the launch vehicle/spacecraft interface
does not have to be the total mass of the spacecraft to be analyzed,

but can have any value convenient for the transient analysis performed
earlier on the launch vehicle. The present approach does correct for

whatever mass value was used.

Second, in considering the composite structural system of
Figure 1-2, which consists of a spacecraft modeled by S-normal modes

and a launch vehicle modeled by L-normal modes, there wiil be (S + L)

1-7
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modally coupled equations of motion. Unlike the transient analysis
vhere the solution is expressed in the complete (S + L) space of modal
coordinates and time, a bound on the complete solution is established

herein by:
(1)

(2)

(3)

Idealizing the totality of (S + L) mathematical space

of modal coordinates by an array of nested (S x L) mathe-
matical subspaces, in each of which only one spacecraft
mode is individually coupled with one launch vehicle mode.
In this fashion, each spacecraft mode is coupled with
L-launch vehicle modes one at a time. To derive a bound
on the total solution in the original (S + L) mathematical
space, an explicit solution in the form of spacecraft
modal response time history is first derived for the pair
of modes in & typical subspace. The explicit form of this
solution is derived here, and is based on the idealized
modal forcing function Just discussed. Furthermore,
because the spacecraft member loads are the ubjective of
the analysis, and since these are proportional to the
generalized modal displacements, the response quantities
used here are generalized modal displacements, qsﬁ(t)’ from

which an expression of the bound Qsl of qgl(t) is then
derived.

Numerical computations are made first to establish the
bounds, QSQ’ on each of the (S x L) discrete modal responses.
Each bound Qsi corresponds to one of the (S x L) subspaces.
To account for unknown design tolerances and variations in
the structural model idealization, worst cases can be
provided by allowing realistic possible tuning between each
spacecraft mode and its nearest launch vehicle mode, and by
scaling the entire frequency spectrum of the launch vehicle

with respect to that of the spacecraft.

Next, a bound c¢n the total spacecraft modal response, Qs,
is constructed by summation over all the discrete L-bounds

for that spacecraft mode. The summation can be over

PR LY ’L
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(1)

absolute values, or in a root-sum-square sense that can
also be welghted to account for phasing.

Finally, spacecraft member loads are obtained by adding
the contributions of all spacecraft modes, either in

absolute value or in a root-sum-square sense.

In the procedure outlined above, steps (1) and (2) derive expres-

sions for bounds on the discrete response, Qsz’ in each of the (S x L)

modal subspaces, while steps ‘3) and (4) construct a bound on the

complete
bounds.

solution in the total (S + L) space from the discrete Q,
In this manner, much computational effort is saved over the

usual transient analysis.

The significant improvements or differences from Reference 1-2 are:

(1)

(2)

(3)

(L)

Idealization of the actual forcing function by an impulse
permits a simple evaluation of the shock spectra peaks.
Other forms of forcing function idealizations could also

be dealt with in the least square sense.

The shock spectra matching is applied to the modal — rather
than the physical — degrees of freedom. This gives
greater flexibility and more generality in the application

of the procedure.

The modal displacement spectra, Qsz, is derived for an
arbitrary pair of coupled modes, a launch vehicle mode

and a spacecraft mode, regardless of the proximity of their
associated natural frequencies. Thus, the a priori selecticn
of a specific launch vehicle mode on the basis of its rela-
tive significance in pairing with a given spacecraft mode

is not required.

The entire treatment is believed to lend itself more
readily to an automated spacecraft loads analysis that is
substantially less dependent upon the analyst's intuitive

ability.

1-10
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c. BASIC ASSUMPTIONS

Other than the usual assumption of linearity of structural behavior

€or both the spacecraft and launch vehicle, the following assumptions

ire made here:

(1) The mass (and inertia) ratio between the spacecraft and
the launch vehicle is small, but not necessarily
infinitesimal.

(2) The interface between the spacecraft and the launch vehicle
is assumed statically determinate.

(3) No external forces are acting directly upon the spacecraft
other than through the common launch vehicle/spacecraft-

interface.

(4) A transient analysis of the launch vehicle with or without

a dummy spacecraft is available.

Assumptions 1 and 2 are not overly restrictive, and could be
relaxed without much difficulty. Removing assumption 2 would reguire
introducing more complex basic equations. Assumption 2can also be dealt
with by introducing a portion of the launch vehicle interface in the
gpacecraft —.del. Other lesser assumptions are also made, and will be

stated in subsequent sections as they arise.

1-11 !
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SECTION II .

BASIC EQUATIONS

A derivation of the equations of motion of a damped linear
structur. 1l system under the action of prescribed forces (F (t)} and
prescribed rigid body accelerations {R(t;, *an be found in the litera-
ture (Reference 2-1). For each normal mode n = 1, 2, +++, N, the

equations may be written in the following form:

. . 2
2 =
Male, * “Enwnqn* “n qn) <

S >(F,} - <M_>(R} (1)

nj " J

where,
R = prescribed rigid body base motion

q = generalized modal courdinates that are related to the
physical degrees-of-freedom, {u}, by the normal modes,[¢n],
such that {u } = [¢ ]{qn}

{¢n} = normal mode shape associated with qn, it is designated by
j } when evaluated at the J th physical degree-or-freedom
sas . th
£ = percent of critical modal damping for the n = mode
w = natural frequency of the system, associated with a {¢n},

and En

<MnR> = mass coupling between elastic and rigid body modes

Mnn = elements of the diagonal modal mass matrix whose normalization

is subsequently chosen so that Mnn = 1 for all modes

{F.} = time variable vector of forces applied at an arbitrary location

J due to an arbitrary event

2-1
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g’ Equation (1) can be applied to a spacecraft mounted on-a launch
% | vehicle through a statically determinate interface as shown in Figure 1-2. i
; Using subscripts s, &, and i to designate quantities asscciated, respec-
E‘_ tively, with the spacecraft, the launch vehicle, and their common

; interface i, Equation (1) can be separately written for the spacecraft
and the lsunch vehicle by taking proper account of the reaction forces,

{Fi}’ and accelerations, (ﬁi}, at the interface. The results are:

i . for the Rth normal mode of the free-free launch vehicle

o . 2
dy + 26008, + g, = <4 () - <oy >(F,) (2)

i th

or the s~ normal mode of the spacecraft, cantilevered from i,

. . 2 o
qs * 26swsqs + wsqs - -<msi>{Ri} (3)

In Equations (2) and (3), the interface acceleration, {ﬁi}, is
obtained by superposition of the contributions of all launch vehicle

modes, rigid and elastic:
R} = [0, 1) + [0, 1{T,) (k)

The launch vehicle rigid body acceleration {ﬁR} above is obtained as a

special case of Equation (2) when w, = 0:

[Mpplldp} = [eg 1 {F} = [op; 1{F,} (5)
Furthermore, the reaction forces, {Fi}’ on the statically determinate

spacecraft-to-launch vehicle interface are obtained by summing the

reactions for all spacecraft modes T:

T
= 8 R 3 e
{Fi}- E [mii]{Ri} + [mis]{qs} s =1, 2, , T (6)

s=1



N . - . : [y e
. Pt

P e 2
< - T I P 4 ey Y 7 . 4 = ' o B N K N » 5
P S N LA There E T o -
il 25 = Z s g et e - —— -

URIGINAL
OF POO
in vhich [m:i] is the contiibution of each mode 8 to the rigid mass

matrix relative to the interface i. The following relationship holds
for each mode s:

8
[mg;] = {my }em >

Rather than including all spacecraft modes, only a truncated or selected
set of modes 5 < T are usually retained. Such truncation or selection
may be done by including a residual rigid mass [M defined by

(Reference 2-2):

11)res
S

DT = g1 = D[] (1)
s=1

where [Mii] is the total rigid body mass matrix when all T modes are

considered;

;1 = [m Jm ]

Therefore, Equation (6) for {Fi}, can in general, be replaced by:

N T T

A

S
- e S bdd .
{Fi} = [Mii]RES{Ri} + E [mii] {Ri} + lmis]{qs} (8)
s=1

Tu Pquation (8), the neglected mcdes are represented by their
equivaient rigid muass, regardless whether their frequencies are higher
or lower than the range in question. Tn this manner one is able to

consider the elastic mass contributions of as few cr as many snacecraft

£ s Py

modes as desirable, with the remaining modes contributing to the
residual rigid mass. A greater number of elastic modes result in a

smailer residual rigid mass matrix, which approaches zero when all

elastic modes have been included. From a modeling point of view, such
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a residual mass matrix can also have a wide range of applications in
representing the mass characteristics of part or all of the spacecraft
during the various cycles of loads analysis. In particular, the residual
mass term allows the analyst to use directly the modes of the launch
vehicle loaded by a rigid mass.

For S-spacecraft and L-launch vehicle elastic modes, Equations (2)
and (3), along with their companion expressions (k4), (5), and (8) result
in (8 + L) coupled equations describing the motion of the composite
spacecraft-launch vehicle system. Instead of the commonly used transient
analysis for the solution of this system of equations, a generalization
of the shock spectra concept will be developed next, with the aim of
obtaining a bound on the solution rather than its detailed time history.

2=k

Uil

Lo

k4
-
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SECTION III OF POOR QUALITY

GENERALIZED MODAL DISPLACEMENT SPECTRA

A. IDEALIZED EQUATIONS

In a full transient analysis of the coupled (S + L) Equations (2)

and (3), all modes are simultaneously considered, and the solution is
. sought as time histories of the response quantities of interest. Since
bounds rather than time histories are needed for desigr, much computa-

- tional effort can be saved by introducing mathematical idealizations

*
D

that allow a relatively simple estimate of the bounds. This is achieved
here when the entire (& + L) mathematical space of modal coordinates is
: idealized by an array of nested (S x L) mathematical discrete subspaces.

In each subspace, a spacecraft mode s is coupled with a launch vehicle

mode %, thus giving rise to (S x L) possible pairings. A bound on the
true solution in the vriginal (S + L) mathematical space is established
1 by summation over the individual discrete bounds in the (8 x L)

subspaces.

Because the spacecraft member loads are the object of the analysis
here, and since these are proportiovnal to the gencralized modal dis-
placements qs, bounds on the spacecraft member loads are expressed in
3 terms of the bounds, Qsi’ of the generalized modal displacements for
each subspace. . A typical generalized modal displacement bound, Qsl’
is derived here for a typical subspace in which one spacecraft mode q
: is coupled with one launch vehicle mode Q- For this purpose, Fquations
. (4), (5), and (8) are solved together to yield:

{ﬁi} ([I] + [wii][Mii])-l([wij]{Fj} o) 3 - [wii]{mis}as)

(9)

{Fi} ([I] * [Mii][wii])-l([Mii][wiJ]{Fj} * [M:i]{¢iﬁ} 69 * {mis} zis)

3-1
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[v,,] = [0, 1 IM-21 [0, ]

-[M

yiJes * [m)

ii]

Loy,) = Loyl DGR Leg,]

If the ratio of the Euclidian norm> of the rigid mass matrix, [Mii]
defined above for the spacecraft, to the norm of the total rigid launch
vehicle mass matrix, [MRR]’ is small, a simplifying approximation can
be introduced in Equation (9), in which

s [y
D100, ) = 05,0 [o, D DCET D, ] % 0
(10)
= [uS 2
D 10y 1 = DG, Lo, 1 DMEcT [og,] 2 0
This results in the approximaste set of equations for {ﬁi} and {Fi}:
{r;} = [WiJ]{FJ} +{o,} qp - [y Hm ) &s
(11)
(R} = DM Moy, & + fmy ) 4

which, when substituted into Equations (2) and (3), yields the following

simplified version of the equations of motion for an arbitrary pair of

coupled spacecraft and launch vehicle modes:

lAs a measure of the magnitude of a matrix A, the Euclidian norm is
defined in analogy with the length of a vector by

N(A)= Zif; aij);i

where ai are the elements of A.

J
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Note that removing the assumption that lead to Equation (10) will result
only in redefining the terms of Equations (11) and (12). Also, slthough
similar to Equation (C-5) of Appendix C, Equation (12) holds for only
one launch vehicle mode and one spacecraft mode at a time, unlike
Equation {C-5), which holds for all modes.

In Equation (12),

s -
<07 U Hog ) = <0 > My Tpps(og ) + <o >my Fomg>Toy )
= Mg ¥ 1y
_"i{‘_’,w ,
where F .eq “e ;.

A Wi T
Al
Mog = <0y (M5 ppglog b = mp + <o, > 10, 3 :

S
Mgy = <bgy7lmyglgp> = <o >lmy Fem >loyyd

Then, Equation {12) can be rewritten in the following more convenient

form:
-
+ .

(1 usﬁ) “sz xl b

“sg | “sz x2

Fl(t)1
>

+ 0 (13)
.
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in which the following additional definitions have been used:

: m
i u, = B2 }
. s 1+ M

; sl

y (1k)

&
&"\
o+
g
[

= <¢U>{FJ(1:)}

1 )x
1+M 1

_ (<msi>{4’u} ) ~ (i By
s 1+ M -
sl

o2
=
i

B. MODAL DISPLACEMENT SPECTRA

The pair of modally coupled equations in Equation (13) describe
the motion in any of the idealized (S x L) subspaces where a spacecraft
mode is coupled with a launch vehicle mode. A bound on the spacecraft
generalized modal displacement in such subspace is derived in this
section from an explicit time-dependent solution of Equation (13), in
which the actual launch vehicle modal forcing function Fz(t) is modeled
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by an equivalent forcing functicn having a simpler forw of variation
with time, The selected idealization of the forcing function is an
impulse delta function having a magnitude FOE’ or alternatively, an

initial velocity with a magnitude Vou

The equivalency tetween the actual forcing function and the idealized
one is established on the basis of producing identical bounds on ti=
modal displacement. This requirement yields one 2quation for the
definition of the magnitude of the initial impulse or velccity. The
choice of an initial impulse or velocity as an idealization of the
actual forcing function is made here only for simplicity of the resulting
solution. Ir fact, any other choice of time variation for the idealized
forcin - function is acceptable, provided that the above mentioned
equivalency condition is enforced. For example, a sinusoidal idealiza-
tion (as in Reference 1-2) in terms of two unknown parameters, a magni-
tude and a frequency, could be used. By enforcing more than two condi-
tion equations, one could determine the two unknowns, magnitude and
frequency, in the least square sense. Functions of higher number of

known parameters could be dealt with in a similar fashion.

An analog computer solution of Equation (13) is given in Appen-
dix A for a modal delta function impulse of magnitude FOQ’ associated
with a launch vehicle mode &. Also, details of the analytical solution
to the same equatiuns are -given in Appendix B for the equivalent modal

initial velocity v The analyitical expressions for xl(t) and x2(t)

oL’
are written as:

I . . ﬂ:Lw_;ﬁ_._m:.-;ﬁ
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nl
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Ql(l < 92) R IPCIPY _
- —— sin un2t
wn2
2 } {15)
Rv -£ w .t _
x . (t) = ot . e nl nl sin w |t
2 @2 -0 |= 1
2 1 nl
£ ,w ,t _
- A e 2'n2 sin w .t
- n2
w
n2 )

The following parameters have been used in Equation (15):

“hy = 9ofys Wiz = 98
- M - A
8 =8%-3 By =85+
Y 2 _ 2
W
1 _
R”m2 8,9,
- _ _ 2 - ? (16)
“p =% -y “’2“"2'/1°5n2
+ = - -
£n1%n1 ¥ Sno¥nn = 20,8, $n1%1 ~ Eno¥ne = 29,8
e=l[£a+(1+u )f,]
2 |51 a2’ %2
ER(L-02+u 60" ER+(L+u)E
0= |22 1 sev2t 41 sg! 5o
)

2,2
(1 -0%) + U,
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The objective is to determine the maximum value of the displacement
xa(t) relative to the "base motion" xl(t). The maximum value of

xz(t) is called the "generalized" displacement shock spectra since

the "base acceleration" il(t) is allowed to be affected by iz(t). unlike
the aimple traditional shock spectra concept. To derive relatively
simple expressions requiring minimal numerical calculation for the
generalized modal displacement spectra, further mathematicel simplifica-
tions will be introduced in Equations (15) and (16). These simplifica-
tions were tested and found accurate when the results below were
compared with the results of the analog solution of Appendix A.

First, since 531 and gﬁz are much smaller than unity, the
approximation

E _+ £
" = _ _nl n2 _ 1 AR
forR#0: &, 28, %8 =~ 3 0, [908 *3 G]
(17)
g
2
for R = 0: En =3
is used for the damped natural frequencies ;;1 and ;;2, so that:
w2 - 18
w o m2(ol 02) (18)
o = + 1
© 5 wl(ol 02) (19)
where
= w8 1l - £2 = damped center frequenc
WPy = Yy n P quency

AQ 2
NPy = Wy T /ll - én = damped beat frequency
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Note that the approximation of Equation (17) is not used for the
exponential part of the solution. Also note AR/2f = 92/01.

Furthermore, according to Equation (16), 6 << B. In fact, 6 tends
to be exceedingly small in the neighborhood of R = 1. Therefore, it
is sufficient to retain only the first order approximation for eet.
i.e., AR 8t, and correspondingly e 21 _6t. Tis approxi-
mation, along with that of Equation (17) and some trigonometric trans-
formations, lead to the following simplified expression for the relative

displacement xa(t) for the spacecraft mode:

x2(T) & —wIVOL[DI(t) + D2(r)], T=wt (20)
where
1 Yo ‘ -8t
Dl(t) =—>—\|5- 6t] e sin p,T cos p.T
2w<p 01 1 2
22
RN Bt |
D(t)=——] —-81] e cos p.T sin p_t
2 o 2 o 1 2
wzpl 2

For R # 0: since 02 is smaller than pl, an accurate estimate of
the maximum value of the relative displacement x2(t) of Equatien (20)
is provided by the discrete maxima Dmax of the simple sinuscid, where

cos p, T and cos p,T are either zero or unity, (see Figure 3-1). When

Dl(r) approaches its maximum D . DQ(T) approaches zero, and vice

1max
versa. Therefore, the maximum relative displacement Dmax is given by the

largest of Dlmax or D

2max:
o l
D = 1 2 - 01 e Bt sin p, T
1max 2 o} 1
2m192 1
b (21)
p
D = L < o0t e.BT sin p,.1
2max 2 p 2
2w201 2 -
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Figure 3-1. Graphic Representation of Dy(t), Do(t), and
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vhere T is determined as the smallest root of the characteristic

equations

P {1 - (o,/0,) 01]
for Dlm : tan pl‘l‘"'é]; l.....?.e
[i + (91/92) 3-(1 - BT{I

8aX

(22)

Py [1- (oy/0)) 1)

T 8 =

AN R

The definitions introduced in Equation (14) and the equalities
of Equations (21) and (22) are now combined to give the generalized

for D2 o tan o

modal displacement spectra, Qsl:
wv. . /m
Q. = 1 0L st D A (23)
sL 1+ Msl) max

Equation (23) above, along with its companion expressions of Equa-
tions (21) and (22) represent a generalization of the traditional
shock spectra concept since these expressions account for interactions
between the oscillator and its base, i.e., between the spacecraft and
launch vehicle modes. They also represent an improvement over the
results of Reference 1-2 in that they hold true for an arbitrary pair
of coupled modes, a launch vehicle mode and a spacecraft mode, regard-
less of the proximity of their respective natural frequencies. It is
this fact that makes it possible in the present approach to include
contributions of all launch vehicle and spacecraft modes in the com-
putation of bounds on the modal displacements and subsequently on the
member loads. It is noted here that Equation (21) suggests that the
damping effect is through the "average" damping 8 of the spacecraft
and the launch vehicle as defined in Equations (16) rather than through
each damping separately. This point is explained further in Appendix A.
Although derived for R # 0, Equation (23) is still valid in the limit
for R + 0. This is shown in Appendix D,

3-10
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The generalized shock spectra will be identical to the traditional
shock spectra in the limit vhen, in Equation (23), the mass ratio, Mg
.defined by Eq. (14) for the oscillator equivalent spacecraft mode, is
allowed to approach gero while the associated stiffness increases such
that the natural frequency is held unaltered. This is the case of the

]

shock spectrum of a rigidly-loaded launch vehicle mode. This remark will

be useful subsequently, in evaluating the initial velocity v

ot °f
Equation (23).

Generally, however, for each set of parameters R, wl, El. 52, usl,
+++, etc, describing the characteristics of a spacecraft mode s, and a
launch vehicle mode &, Equations (21), (22), and (23) will yield an
estimate of the upper bound of the corresponding generalized modal
displacement spectrum, Qsz, in terms of the as-yet unknown initial modal
velocity, voz. Once vOl has been determined, the generalized modal
displacement spectra, ng, for s =1, 2, *+* S, and £ =1, 2, - L

can be combined to establish a bound for the member loads.

C. DETERMINATION OF THE INITIAL MODAL VELOCITY Vou

An analysis of the launch vehicle with some representation of the
spacecraft is usually done by the launch vehicle organization for the
structural design of the launch vehicle, or part of it. To properly
design the part of the launch vehicle at the interface with the space-
craft, the reaction loads from the spacecraft to the launch vehicle must
be introduced in the analysis. Since these loads are almost entirely
due to the fundamental cantilevered modes of the spacecraft, a simple
model of the spacecraft such as a two-mass model is adequate. Note
that this simple spacecraft model is used for the design of the launch
vehicle at its interface with the spacecraft, but is not intended to
be used for the detail design of the spacecraft. However, this two-
mass model is useful for checking the launch vehicle data and can also

be used to determine the weighting factor Wl defined later.

3-11
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The original launch vehicle forcing functions as used for the
launch vehicle analysis are given by a set of components {Fj(t)} expressed
in the physical coordinate system xyz and applied at given locations of
the launch vehicle structure. The modal analysis done on the launch
vehicle with any spacecraft or dummy provides, in effect, a new system
of coordinates, i.e., the generalized coordinates qc(t), that are used
to express new component3 of the forcing functions as a set of generalized
forces Fé(t). In effect, Fc(t) is another definition of the same forcing
functions Fj(t). Therefore, one can use this set (Fc(t)} to represent
the forcing functions without the need of knowing the physical components,
nor the location of the original forcing functions. Note that this
observation holds only because an analysis of the launch vehicle with
a dummy spacecraft has already been done.

Any further change of modes, if necessary, will simply change the
set ch(t)} by a modal transformation. For example, the present method
requires the use of the modes of the launch vehicle loaded only by a
rigid mass. Therefore, the components {Fg(t)} of the forcing functions

with respect to the rigid mass loaded launch vehicle modes are

T
{Fl(t)} = [v ]{Fc(t)} (24)

where [V] is the modal matrix that transforms the elastically loaded

launch vehicle to the rigid-mass loaded one as shown in Appendix C.

Similarly, the generalized coordinates {al(t)} of the rigid mass
loaded launch vehicle are obtained from the coordinates {ﬁc(t)} of the
elastically loaded launch vehicle by Equation (C-18) or Equation (C-20)
of Appendix C.

The unknown initial modal velocity Vg cen be determined from
the requirement that the "actual" forcing function and the "idealized"
forcing function produce identical bounds for the modal displacement
spectra. Information for the "actual" forcing function can be obtained
either from an initial analysis done on a simplified model of the
spacecraft-launch vehicle combination, or from recorded flight response

data for another spacecraft. It is believed that the minimum required

3-12
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information is three degrees of freedom at the spacecraft-launch vehicle
interface. The knowledge of more degrees of freedom improves the
definition of Vor* In case of an available initial analysis, the
knowledge of the modal response-time histories for each mode leads to
the best estimate of Vop® For the last case, the pesk value of the
traditional displacement shock spectra, Di, is ealculated for the modal
acceleration response Hg(t) of the rigid mass loaded launch vehicle as

shown by Equations (28) and (29).

Finally, it should be noted that Di will need to be computed only
once for each launch vehicle mode and each flight event of interest.
This. part of the computation will :emain the same as long as the launch

vehicle and the forcing functions are not changed.

In the derivation done so far and in what follows, rigid mass
loaded launch vehicle modes are used. These modes are obtained by the
method of Appendix C, or directly from the launch vehicle analysis if
the spacecraft was represented by a rigid mass, as may be the case

for preliminary launch vehicle design.

1. Estimate of Vo From the Modal Response

Assuming now that the time histories ag(t), £ =1, 2, +++, L for
the rigidly-loaded launch vehicle are available from a previous launch
vehicle analysis, and that Di (w2, 52) representing the peak of the modal
displacement spectrum D2 (wg, 52) for eac; mode has been evaluated, then
vgpe can be determined by requiring that D2 be equal to its counterpart,
Qf, derived from Equation (23) for Mg * 0 This is illustrated in
Figure 3-2. To derive Q%‘for R # 0, the shock spectrum Q g is computed
for each of the launch vehicle elastic modes & = 7, 8, --+, L from Equa-
tion (23) in the limit as Mog -+ 0. Appendix D gives the proper values
of the modal shock spectra for the case when R = 0, that is, for
£ =1, *++, 6.

Lim (Dmax) (25)

Q, = jw,Vv
2 108
usl+o
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The quantity, Lim (Dmax)’ of Equation (25) is readily evaluated by

)

s
substituting the following parameters in Equations (21) and (22): as
Mgy * O, and R¥ 0

o
H
i

(€lR + €2) )

i
6 = (ElR - 52)

—O . (R+1)/(R-1) L (26)

= L 2
=3 (R +1) /3 - &

=L r_1) A - g2
92 = 5 (R 1) 1 £n
21
g =5 (6 +&) J

As seen from Equation (26), the displacement shock spectrum of Equa-
tion (25) is dependent upon the value of R = wl/w2. The peak value of
Ql’ labeled Qi, occurs for R -+ RP. Finding the exact value of RP that
maximizes Ql is rather involved anaelytically. Only an approximate

estimate will be given here.

Considering the special case when 8 and &i of Equation (26) are

assumed negligibly small, we 1ind that

-1 ,
( ) o-[tan (aP/BB)/(nP/FB)]
win (D = R

(r=1,0) (27)

max e —— ’
= 9]
us‘l)O m',? a” + )382
2 r
3-15

A 1 St b R o it 9t

Pl s Aenin

3




where

(R + 1) forr=1

r (R~-1) for r = 2

By inspection of Equation (27), it is concluded that the peak occurs

for r = 2 and RP = 1. The approximation that 8 in Equation (26) is

negligibly small, is of the same order as the approximation that the -
imaginary part of the solution of Equation (15) is negligible, both of

which are acceptable. The exact solution was evaluated from the analog

simulation of Appendix A, in which the maximum of D occurred within

better than 1% from R = 1. For Rl = 1, Equations (25) and (26) yield

the following expression for the initial modal velocity and for wy # 0:

_ 2 P
W Vo = ewl(El + 62) Dz(we’ 52) (28)

where e = 2.718 .

Instead of the modal displacement peak ot (wz, £.), the modal
acceleration peak Ag( X E ) may be used. At the peak of the displace-

ment, the two quantities are related by w (we, £,) = Ai( Wy E ). Thus,

the following alternate expression for Vor is used, noting thax wy = vyl

w vy, = (8, + €) Ar(u, €) (29)

for w, # 0 and where £ is the damping used in calculating the accelera-

1
tion shock spectra A, of ﬁg(t).

£

As shown in Appendix D, for w, = 0 Equation (29) becomes

P
(w) Vom)w3+o = Ay

1

2. Estimate of v, From Physical Interface Response

0L
In the absence of availability of ac(t), a set of initial modal
velocities VOR can also be obtained in = manner similar to that of

3-16
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Reference 3-1. It is assumed that t - time histories from an analysis

or flight data of an No
interface are known for another snacecraft or a dummy one. The shock

spectra Si (1 =1, 2, NO) for the NO
as typically represented by the solid line of Figure 3-3.

degrees of freedom at the launch vehicle/spacecraft

degrees of freedom are calculated,

Next it is assumed that the mode shapes ¢n of the structure corre-
sponding to the available interface acceleration are alsoc known. Then
each mode is given an initial velocity v, and the total interface

On
acceleration is calculated from:

-£ wt
. - § : nn .
R, (%) wnv0n¢ e (an sin wdt + bn cos wdt) (30)

where

o’
n

n

g

The value of Von c&n be determined by trial and error so that

the shock spectra of R, (t) above, represented by the dashed line in

i
Figure 3-3, envelopes the shock spectra of the real response. Since

only a small number of vehicle modes are significantly contributing to

ﬁi’ one can choose a set of modes N < N to simplify the calculations.

The important criteria is that the v, and the mode retained give an

On
envelope of the real shock spectra.

Finally, the initial modal velocity Vo for the rigid mass loaded
launch vehicle is obtained by the transformation of Equation (31),

where a bound for v., will be obtained by taking root sum square

oL

values, since the sign of v n is not retained.

0
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Figure 3~3. Shock Spectra Matching and Envelope

3-18



vy e

TIPS R TR T S, A

TR DA R PRI B DA D S e e

ORIGINAL PAGE IB
OF POOR QUALITY,

w7y, & j DV ovon)? (31)
n

Note that this method is only a fall-back method, and that the modal
response method of the previous section is to be preferred.

D. TUNING

During the early stages of design, the spacecrait and launch
vehicle modes and frequencies are obtained from analyses that usually
contain a large degree of uncertainty. To account for such uncertainties,
one may introduce an artificial tuning between the spacecraft and launch
vehicle modes. Unlike other methods, the present approach makes artifi-
cial tuning possible and easy to implement because Equation (23) is
inexpensive to evaluate and is valid for any peir of spacecraft and launch
vehicle modes, regardless of the proximity of their respective

frequencies.

Two forms of artificial tuning have been identified: global and
local. In global tuning, the entire spectrum of launch vehicle fre-
quencies is incrementally ~caled in eithe. direction -«7.%"v: %o the

spacecraft frequency spectrum. For each increment, a giobal response

is computed and used as a measure fcr determining the worst case fer

design purposesz., In this scheme, tuning is achieved by finding the
amount of relative scaling that maximizes 5: Clearly, limits on
the allowable relative scaling must be selected in advance, and the

search for the muximum 5 conducted within these limits.

In the local tuning, the response is maximized for each spacecraft
mode, one at a time., This is achieved by allowing the necrest launch

vehicle frequency to coincide with that of the spacecraft f'requency

3-19
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under consideration, (i.e., R+ 1) provided that the two were
originally separated by no more than a preselected amount. Other

schemes for tuning can be also devised.
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? SECTION IV

SPACECRAFT MEMBER LOADS, DISPLACEMENTS, AND ACCELERATION

A. MEMBER LOADS

When the time histories of the spacecraft generalized modal
displacement qs(t) are determined as a result of a transient analysis,
one can express the vector of the spacecraft modal member loads,
(fas(t)}A, for each member A due to motion in mode s in the general

form (Reference 2-1):

{fas(t)}A = [cablwbs} qs(t) (32)

in addition, the total lcad vector due to contributicns of all space-

cralt modes 1is

S
{r (t)}, = Z {r (0}, (33)
s=1
where
[Cab]A = matrix of force coefficients, whose elements are the
ath force component in member A due to a unit displace-
ment in the bth degree of freedom
{¢bq} = as before, spacecraft mode shape at the peP degree-
of-freedom
[Cab]{¢bs} = is recognized as the vector of modal stresses for mode s.

In the present approach, the time histories of the spacecraft

generalized modal displacements q (t) in Equations (32) and (33) are
o

iwd

el 1ot duindh

v e A

o

B Y .



not computed for the antire (S + L) mat. > atical space. Instead, they

. - -
- - .

are replaced by an estimate of their upper bound, Qs’ so that the
correspondin bound on the spacecraft modal member loads, {Fas}A is
written analogous to Equation (32) in the form:

(Fas}A = [C

wlaltped 9 (34)

The bound, Qs’ for the spacecraft generalized modal displacement
is expressed in terms of the discrete modal displacement spectra, Qsz
of Equation (23) for each of the (S x L) discrete mathematical sub-
spaces. Since each Qsl results from coupling between a spacecrart mode
s and only one launch vehicle mode, and since a complete representation
of the launch vehicle includes more than one mode, say L modes, con-
tributions due to all L modes should be included. Clearly, because
Equation (23) does not contain information regarding time-phasing among
modes, only a bound can be computed, and is provided by summation over

absolute values or in the root-sum-square sense.

Thus, Qs is estimated by
L

Q = Z lQg,| (35)

or

(36)

or

O
H

L
R DM ATERE (37)
=1

3
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wvhere wl(“s’ ml) is a weighting function that can be used to account for
time phasing between the launch vehicle modes. This weighting function
can be determined from the available transient response of the simplified
two-mass model of the spacecraft or from matching of the shock spectra
of the mass-loaded launch vehicle interface.

Analogous to the calculation of Qs, a bound on the magnitude of
the total vector of member loads {Fa}A due to all spacecraft modes
s=1, 2, -, S is found from:

S
{F 2, = Z IF,| (38)
s=]
or
{Fa}A = (39)
or
S
_ 2
()}, = Z W () F_] (40)

Member loads computed by Equations (35) and (38) are, of course, much more
conservative than those computed by Equations (36), (37), (39), and

(0). Such excessive conservatism may he unnecessary, especially if
each Qs for a spacecraft mode s is artificially tuned to the nearest
launch vehicle mode. N

S

B. DISPLACEMENTS AND ACCELERATIONS

An estimate of the bound on the displacements and accelerations

associated with any or all degrees-of-freedom used in the spacecraft

b-3
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model can be cbtained in a manner similar to the member loads of
Equation (34). Once Q, has been established according to Equations (35),
(36), or (37), & bound on the spacecraft modal relative displacements
{Dbs}’ or absolute accelerations (Abs}, are found, respectively from:

{Dbs} = {¢bs} Q (b1)

2
{Abs} =u_ (o 1 Q (k2)

Finally, a bound on the spacecraft total displacement and acceleration
degrees of freedom, {Db} and {Ab}, is written analogous to Equa-
tions (38) through (40). For the displacements,

S
) =4 ) ol (43)

s=1

or
{p} = (bk)
or
S
_ 2
=4 [ Y bite) o) (k5)

h=h

R
e P

g

- gk
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Similarly, for the accelerations, g?g%gq%ﬁ%g
S
{a} = 2 A, (46)
s=]

or

(47)

or

(18)

oy
o
vt
n
=
€
d
_‘M

c. FLOW DIAGRAM

Figure L4-1 summarizes the different steps taken from the launch
vehicle data to the computation of bounds for the member loads, dis-

placements, and accelerations.
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SECTION V OF POOR Qﬁ}ﬁb&?
CONCLUSIONS .

The primary drawback of the original shock spectra method
(Reference 1-1) is that it can result in very conservative answers,
and therefore overdesign. It is also very dependent upon the analyst's
Judgment. However, it has the advantage of low cost of analysis and
yields bounds that can be readily used for design. The transient
analysis, on the other hand, is accurate, but is very expensive and
difficult to implement because of its sensitivity to design change. The
generalized shock spectra approach described in this paper, although
still an approximate procedure, combines the advantages of low cost
while maintaining a very reasonable accuracy. In addition, unlike the
method of Reference 1-1, it is substantially less dependent upon the
analyst's intuitive judgment in pairing spacecraft and launch vehicle
modes. Because of its low cost, the tuning effect of launch vehicle
modes with spacecraft mode can be very easily explored and used for
design to establish worst case. Finally, the procedure is currently
being applied to the Galileo spacecraft loads analysis with very accept-
able results.
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APPENDIX A

ANALOG SOLUTION OF THE EQUATIONS OF MOTION
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The analog exact solution of Equation (13) is given here to verify
the analytical solution of Equation (15) and Appendix B. The equations
of motion for the free vibration cf the system in Equation (13), or
that of Figure A-l, are

. . . 2
+ + 2 -
(1L +w) X+ ux, + Elwlxl +wix) = 0 (A-1)
ux, + ux, + 2uf.w. %, + welx, = 0 (A~2)
1 2 2272 272
where
u = ratio of a spacecraft mode effective mass m, to a launch vehicle
mode corrected effective mass ml; also, ¥ = uSQ of Equation (13)
w, = corrected natural frequency of one launch vehicle mode

w2 = cantilevered natural frequency of a spacecraft mode

El = launch vehicle modal damping
52 = spacecraft modal damping

X, = mass 1 response (unit mass)
X, = mass 2 response (mass u)

The solution of Equations (A-1) and (A-2) to an impulse force
applied on mass 1 is sought. Equivalently, the initial conditions for
Equations (A-1) and (A-2) are

x,(0) = Fy x,(0) =0
(A-3)
xl(O) =0 x2(0) =0
where FO is a constant.
To apply the initial conditions of Equation (A-3), the right
hand side of Equations (A-1)and (A-2) must be
F; = (1 +u) Fys(t)
(A-b)
F, = uFo §(t)

A-2
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Figure A-2 shows the analog diagram corresponding to Equations (A-1)
and (A-2) solved by applying initial conditions of Equation (A-3). Fig-
ure A-3 shows the analog diagram corresponding to Equations (A-1) and
(A=2) solved by applying the impulse forces of Equation (A-l4). These
two circuits have been shown to give identical response time histories.

All the results shown here have been obtained using Figure A-3.
The following parametric variations were made:

(1) Frequency ratio:

f2_% 1
Tem =rej
1

fl was held at 50.00 Hz and f

o vas varied from 40.00 Hz
to 60.00 Hz.

(2) Deampings: El = 0.01, 0.02, 0.03 and 62 = 0.01, 0.02,

0.03 maintaining El + 52 = constant = 0.0L.

(3) Mass ratio: uw = 0, 0.001, 0.01, 0.1, 1.0.

Figure A-l4 shows an example of the time histories of the spring
force per unit mass nge(t) for mass 2 versus time for all the param-
eters R, El, 52, and u. 2‘ne quanti;y of interest for structural loads is
the largest peak value w, Dmax of w2x2(t) of mass 2, which is also the
peak of the total acceleration a of mass 2. The peak value was read
from figures similar to Figure A-4., Figure A-5 is an example of plots
of the pesk value wg Dmax versus the frequency ratio R. The results for
various values of the mass ratio w and dampings &1 and 52, keeping

El + 52 = 0.04 are tabulated in Table A-1.

The solid curve on Figure A-5 has Loen obtained from a simplified

Equation (23) where 6

0 and where Cn has been dropped in the damped

naturel frequencies w -

-a(26/402)
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i
where
AQ = /u + (1 - R)
+ +
2B = ElR (1 + u) 52
-1
a = tan ~ (AQ/28)
R = ml/w2
In addition,
AQ
) AQ tan > T
sin per = gin > T =
Jl + tan2 %?-r
has beer used to show that the results depend on the square root of the
mass ratio u since A2 contains u. The conclusions are as follows:
(1) For a given value of mass ratio u, the maximum acceleration

occurs for almost equal frequencies w, = w, as is evident

from Figure A-5.
‘ (2) Within an error of 1% or less, the peuk acceleration
‘ depends on the sum El + 52 and not on each separate
damping.
: (3) The solid curve on Figure A-5 shows that Equation (A-5)
is an excelle t estimate of the peak value of the
: acceleratior .
The reduction factor C as defined in Reference 1-~2 can be obtained

as follows:

from the analng data of Table A-1.
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It can also be calculated by(ﬂm\ming Equation [A=3) into
Equation (A-6).

(51 + €2)

¢A92 + hBE

el-a-(QB/AQ)

C = (A=T7)

where AQ, B, and o are defined as for Equation (A=5). Equation (A-T.
provides the frequency dependence for C.

Figure A-6 shows a comparison between the analog data and Equa-
tion (A-7) as a function of u for various dampings El .nd 52, keeping
£, + &y = 0.0k, and for R = 1. This figure shows that Equation (A-T)
is & very good ustimate of C and that C ir virtually independent of the
mekeup of the sum El + 52. Only one curve is shown for C as calculated
by Equation (A-7). This is true because the value of C, when §, and
52 are varied while keeping gl + 52 = 0.04, gives a difference too small
to be plotted.
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APPONDIX B

ANALYTICAL SOLUTION OF THE EQUATIONS OF MOTION
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Analytical solution is derived here in detail for the coupled
equation of motion (13):

B - 1]

An analog solution to Equation (B-1) above has veen given in Appendix A.
The general solution takes a complex form, with real and imaginary
parts. One approach tc obtaining the analytical solution to Equa-
tion (B-1) is by first deriving and using the modal coordinates of the
undamped system in Equation (B-1) to diagonalize the mass and stiffness
matrices. This, however, will not diagonalize the damping matrix, but
the commou approximation of leaving out the off-diaegonal terms will
result in retaining only the real part of the solution. This is an

acceptable approximation for small damping.

Let us first write the frequency equation for the damped system

since properties of the damped frequency equation will be used. The

51 . pt |1
{"2} - [Vel .

Substituting in the left-hand side of Equation (B-1) results in the

form of the solution is

damped frequency equation:

k 3 2
D D 2
(“’2) + 2[RE) + (1 + H)E,] (“’2) + [R° + LRE &, + (1 + w)] (-‘f;)

2
+ 2R[E, + ER] (;%) +R =0 (B-3)

B-2

et e g s



AT

The undamped frequency equation is then obtained by letting
El = 52 = 0: .

nl‘-[32+(1+u)]na+32-o (B-b)
where
Q= =
Wy
Yy wy

€
n
£
(7]
)
+
=
[}
=

The roots to Equation (B-3) are w, = Qlwz and w5 = Q2w2 in which Ql
and 92 are defined by

AQ A j
8 =8 -3 :
q (B-5)
AQ !
= + —
@y =95+ 3
o

and 90w2 and AQme, respectively, are the center and the beat frequency:

-
w
2 2
E ( +

Wty = 3 /R +1) ! i
[~ " (B-6) i
w AR = w (R-l)2+u :
2 2 i
a
Associated with the frequencies w and ©o obtained above are i
two undamped mode shapes, respectively defined by i
i
F
- #
B-3 3
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r .
l; -1 ;L-- 1l
2 2
By &y
{v,} = § -=-—- b and (Y ) =] ==ee-- (B-7)
: 1
Lt !

Next, the classical coordinate transformation is applied to X, and x,

to diagonalize the matrices of Equation (B-1):

2] - ] 2]

This results in:

p— —

[ 9 - ( r b
s _L 1 -8 | _l_ }."_ K
2 N &R MY [R (RE, - 51)] 2
Ql | 1
|
< b+2w ———-—-—-——-—-T——|-————————-—1 -
I
. 1 [ - (1 - 02)? .
2, X, ['R' (R, - &) : [ &R A * i 2o
L J _ I -2 gL )
- r
17 1 | )
2 L (L.,
w 1 0 Z1 )\l Q2
+ n 5 p s =+ 1 ’.F (t) (B-Q)
0 w Z 0
n2 2 RS P 1
= -l L J L >\2 Qg
where = J
2,2
)‘l = -—1’1- [(1 - Sll) + ui
Q
1
1 2,2
>\2=gu- [(1-a)" +u]
2
are the generalized mass.
LYP’GGY‘Y%
B-L &&G&SA Q\)P&‘J
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It is ceen that the off-diagonal terms in the damping matrix will

vanish when the damping ratio is proportional to the frequency ratio.
No such limitation will be imposed, and therefore, 51/£2 b ml/w2' How=

ever, the magnitude of the off-diagonal terms will be assumed small

enough to be neglected in subsequent calculations. This is equivalent to

neglecting the imaginary part of the solution, & commonly used approxi-

mation that results in decoupling Equation (B=9), so that

) . 5 1 - ni
Zl + ggnlwnlzl + wnlzl = 2 Foz(t)
Q=
11
1l - 92
Vo406 w 5 4w 7 = 2§ (t)
2 n2 n2 2 n2 2 QQA oL
22
where now:
2”2 (1 - Qi)Q
2Unlgn1 = Al LglR Qh * 52”
1
r
2m2 (1 - Qg)2
2w b = | HR T A
2 2
L 2

b (B-10)

Furthermore, from the theory of equation, the sum of the roots of the

damped frequency equation: Equation (B-3), is equal to the coefficient

of (p/m2)3. Therefore:

w . = 2Rw

011 ¥ Sno¥n2 2

where

Ve Loy

B=5%[gR+ (1 +u) &)

(B-11)
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The following approximate relationship will be useful:

Enlmnl - EnEan = 29“2 (B-12)

where

2 1
+ Eou ‘5[51’“ (1 + ) 52]

1 1
5[
1 Ql

Equations (B-10) may now be solved for & prescribed force system
Fog(t)‘ The specific case when Fgg(t) is an inpulse delta function of

amplitude FOR applied at t = 0 is discussed. By definition, the impulse

Foz(t) = FOEG(t) is the response of an initial velocity Vou'

FOE = Vor for an impulse applied to a unit mass, as it is the case for

Mumerically

Equation (B=9). The homogeneous solution of Equation (B-10) is:

“Snrnrt - “Erart — g
Z = A e sin wnrt + Br e cos wnrt (B=13)

- / 2
where Wop = W 1l- Enr = damped natural frequency and Ar, Br are

constants (r = 1 for launch vehicle; r = 2 for the spacecraft).

The initial conditions for the system at t = O are

xl(O) x2(0) =0

v and x.(0) =0 (B=-14)

)'cl(O) s A

By combining the transformation of (B-8) with the general
solution of (B-13) and the initial conditions in (B-1k4), we have
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x,(t) = .3 1 e
2" “n1
- W ¢
1 —
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APPENDIX C

RECOVERY OF LAUNCH VEHICLE MODAL PROPERTIES

C=1
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A. EQUATIONS OF MOTION

In this appendix,equations are derived whereby the modes and modal
responses of the launch vehicle with an interface loaded by only a
rigid mass can be recovered from the given modes and modal responses of
the ssme launch vehicle whose interface is loaded by an elastic and a
rigid-mass simulation of the spacecraft. Let the subscripts S denote
cantilevered spacecraft modes, and the subscripts C denote the composite
launch vehicle free-free modes with an elastically loaded interface, see
Figure C-1. The motion of the total composite system of spacecraft and
launch vehicle in Figure C-1 subjected to an external force {F }is

J
governed by the set of equations:
(@) + (260 003} + [ulla } = [o )R} (c-1)

wvhere ac are available from the launch vehicle analysis.

The modes of the launch vehicle with a rigid-mass can be computed
from Equation (C~1) by subtracting the modal reactions of the elastic
spacecraft at the interface. This is analogous to Equation (2) of the
main text in which the sign of the spacecraft reaction force {Fi} is
negative since the spacecraft that was originally put on the launch
vehicle is now being removed. 1In this case, the generalized coordinates

1]
are denoted by {qc} instead of ch}:

@)+ (2 Jal) + [0l = [0, MF,) = [0, 1) (c-)

From Equations (8) and (h):

(Fib = M MR+ [m THa}

(R} = [6. 13))

S
S
1 = ;
(451 = M5 Dggs * Z [ms ;]
s=1

| (Cc-3)

—
}

c~-2

e
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Also, from Equation (3) of the main text, the spacecraft is governed by:
(a') + [26.0 103"} + [w]{a'} = =[m_ ) (R} (C-b)
L Egugliag wgildg mimgg IRy -

Equations (C-2, C-3, and C-4) are now combined to give th- guverning

cquations for the rigid-mass-loaded leunch vehicle response:

[l

o

(1) - Lo 1M M0e, 1) | =6, VIn, 1] [0
=In;1Te, 1 | -

=4 - l(cs)

In a concise form, Equation (C-S) is written as:
(@{a'} + [B]{q'} + (&) (g} = {F)

and its undamped homogeneous part is written as

M3’} + @1 4q} =0 (C=6)

B. EIGENVALUE SOLUTION

In general, if the system of composite modes, C, conta.sed
S-spacecraf't elastic modes, and L-launch vehicle rigid-and-ela;tic
modes C = S + L, the undamped eigenvalue solution of Equation (C-6) will
result in (L + 2S) eigenvalues QL, Qsl’ 952 and associated eigenvectors
v}, (Vb (V)

Of these, two S-roots will be repeated, Qs = 932’ and are asso-

1
ciated with the elastic modes of the spacecraft. The remaining L-roots

are associated with the rigid-mass-loaded launch vehicle free-free modes,
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some of vhich will correspond to rigid body modes with gero frequencies,
and the remaining modes will correspond to elastic modes with nonzero
frequencies. The (L + 28) set of modes collectively referred to as [V]

= ' -
will transform Equation (C-6) to the diagonal form

[11@) + [2°](Q} = O (c-8)
with

Q') = [v] (@ (C=9)

c. MODE SHAPES AND ACCELERATIONS AT THE INTERFACE

The acceleration (ﬁi} at the interface can be expressed in either
the {q'} or {Q} coordinates. Thus,

(R} = [¢i]{'ci } (c-10)
or
{r,} = [.vi]{Q}

]
where [¢i] and [wi] are the mode shapes at the interface in the {q } and
the {G} coordinates, respectively.

Because of Equation (C-9),

(R} = (6,163} = [o;] V(D)
= [¥,1(Q}
then
[v;] = [o;11V] (c-11)

C-5

B e e vt s
“

B g e
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D.  MODAL ACCELERATION TIME HISTCRY (§(t)} i
i

The time history of the modal acceleration corresponding to the
nevly obtained rigid-mass-loaded launch vehicle modes {Q} are obtained
from Equation (C-9) so thati

(Q = (vg" (c-12)

The inverse [V‘ll in Equation (C-12) need not be performed. It can
be found from the orthogonality condition that led to Equation (C-8):

vV = (1)
so that Z
v = VW (c-13)
Therefore,
{Q = [V ]MIT"} . (Cc-14)

However, {{} rather than {q'} are usually available from the launch
vehicle analysis. Computing {q'} as a transient solution of Equa-

tion (C-5) is straightforward, but is both costly and unnecessary. For
this reason, two approximate alternative solutions are shown next that

give very acceptable accuracy at low cost.

1. Approximate Solution 1

Since the right-hard sides of Equations (C-1) and (C-5) are

identical, they may be ccmbined to yield the following exact expression:

q g
[¥] = QE—T“—S——iT“
lu 1{a } + [26 w ]1{4.)

+ [2eu a, - a)) + [Wla_ - a) (C-15)
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, M
om%or the rigid body modes w, * 0, the last two terms of Equation (C-15)

N ﬁﬁ are identically zero. However, for the elastic modes, these last two
% terms are small because they express differences between two quantities
¢ of global charter having little dependence on the presence of the rela-
; tively small spacecraft. On account of this reasoning, the last two terms
. of Equation (C-15) can be neglected with little loss in accuracy. This
; implies:
; : > ¢ 4 2 ' i
. q, =9, and q = q, (c-16)
Also,
L] ' d - -
= =
q qs and q . = q.
H
N&w, Equation (C-15) is approximately written as
- “ 4
{
: m{ p2 -z-v--S---7- (c-17) ;
‘ 6; [ Jlq } + [28 0 ]{4_} ;
L 4
EE which, when solved with Equation {C-1k), yields ‘
i
. T %e
QRQsv)]g - -——————=—~- (c-18)

[2)(a]} + [25 0 10d}}

The modal coordinates {q;} and {é;} of the elastic simulation of the
spacecraft may be obtained from an inexpensive transient solution since
they are usually small (of,. the order of 3 to 6 modes). In this case,
the lower partiticn cf Equation (C-5) can be solved for {q;} and [d;} ;

wel P
approxinately by replacing {qc} by {qc}:

H
i
i
;

{H;} + [2§st]{é;} + [wi]{q;} = -[msi][¢icj{ac(t)} (C=19)
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The approximation above is acceptable because (q } is affected only to
the second order by {q } or (q }, and also because there is no tuning
between w, and wc since mc never contains oy exactly.

Thus, Equation (C-18) is alternatively expressed as:

I I R s (c-20)

2. Approximate Solution 2

Let the subscripts cR and cE, respectively, denote the subset of
rigid body modes and the subset of elastic modes constituting the total
number of the composite modes ¢. Thus ¢ = cR + cE. This second
apyroximation is based on the premise that, except for the rigid body
modal accelerations {HCR} and {H;R}, the acceleration time history of
all the elastic composite modes are negligibly affected by the presence
of the elastic simulation of the spacecraft. Therefore, for the elastic

composite modes:

(5.p(t)} 2 1§ _g(¢)) (c-21)

However, for the rigid vody modes, Equation (C-1) gives

{q g} = [¢CRJ]{FJ} (c-22)
Also, Equation (C-2) for the rigid-mass-loaded launch vehicle gives

wlt

{ch} = [¢CRJ]{FJ} + [¢cRi]{Fi} (c-23)

c-8
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OQQ w Solving Equations (C-22) and (C-23), and making use of (C-3), we get

(m - [‘cm”"n][‘icnl) (ign) & Gigg) + [hepy oy, 10G,)

* (0,5 ) [M4100; 511G 5} (c-24)

In the approximation of Equation (C-2k), {Eis} is computed in the same
manner from Equation (C-19) of the previous approximation. As such,
Equations (C-21) and (C-24) along with Equation (C-19) provide an approxi-
mate alternative to computing all members of {a'}. Then again,

Equation (C-14) is used to compute {§}.
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APPENDIX D

DISPLACEMENT SPECTRA FOR THE GENERALIZED
RIGID BODY MODES
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In this appendix, an expression is derived for the generalized
modal displacement spectra, Qsl’ that should be used for the rigid body
modes (P = 0) in place of Equation (23) of the main text.

From the lower partition of Equation (13),

322 + 2&2(»25;2 + mzx Z - ;:.l (D-1)

where, according to Equation (1k4),

X, = (1 +M (D=2)

1 sg) 9y

The homogeneous solution of Equation (D-1) having initial conditions

x2(0) = x, and x2(0) = %, is:
-~ w t
h,y 2%t [, - _
xe(t) = e [B.2 (x0 + €2w2x0) sin Tyt + X €OS mét] (D-3)
The particular solution of Equation (D-1) is:
L [T o (e - =
L(t) = = X, (t) e sin w,(t - t) dt (D=4)
2 5 . M 2
t=0
where
I A
wy = wy V1 =&,
Thus, the total solution of Equation (D-1) is
x.(t) = D+ B (D-5)

2 2 2

Now, the spacecraft modal response qs(t) to rigid body launch vehicle
input (R = 0) is given by

—

s £
qs(t) = 1+ M

(t) D-6
» X, (D-6)

D=2
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£ and the generalized modal displacement st for such cases is given by
% the maximum of Equation (D=6). Therefore,
%W T T, | %) (0-7)
sl
. max .
\‘ *
Where again, R = 0 and x.(t) are defined by Equations (D-3) through
<
. (D=5).

The homogeneous solution xg(t) can be ignored by starting to
compute the foreing function well before the actual event, and only

Equation (D=l) needs to be considered. Then Equation (D-T) becomes

2

Furthermore, by definition, |xg(t)lmax is the relative displacement

shuck spectra of X (t) = (1 + MSR) qﬂ(t)

, 1

()| =1 eM ) = (14M )

nfnﬂxﬁé

max

; where Ai is the acceleration shock spectra. Then

AP
)

= Vo, — g =1, 2, v, 6
2
)

e

This is the same limit that Equation (23) takes for R + 0. Thus,

W i S

£n

=Ap

(wQ/ VOQ ) . (D'B)

" R+0

where w, = w

2 1°
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